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Abstract. A simple method for calculating the electronic structure of antiferromagnetic
chromium with a sinusoidal spin-density wave, based on the variational Ritz procedure, is
suggested. The four-component Dirac wavefunctions, defined in a crystal without allowance for
magnetic order, are chosen as basis functions. The calculations of the electronic spectrum of
chromium performed for different types of spin-density wave polarization show that taking into
account the relativistic effects results in a difference between the electronic structures of the
longitudinal and transverse spin-density waves.

1. Introduction

In recent years, much research has been devoted to the electronic structure of
antiferromagnetic (AF) chromium. The extensive literature on the subject has been reviewed
in [1]. We shall dwell briefly on the main results of both experimental and theoretical
investigations.

It has been found experimentally that, at temperatures below 312 K, chromium has
AF order with a spin-density wave (SDW) incommensurate with the lattice constant. The
wavevectorQ = (2π/a)(1− δ, 0, 0) (a is the lattice constant andδ ≈ 0.05) of the SDW is
oriented in the direction of one of the cubic axes. As a consequence the unit cell contains
about 40 chemically equivalent atoms with different magnitudes of the magnetic moment.
The local magnetic moments are collinear and sinusoidally modulated with a maximum
valueM = 0.59µB . Aside from the fundamental harmonic, higher harmonics(3Q, 5Q...)

also occur. At a temperature of 118 K, the SDW polarization changes from longitudinal to
transverse (the spin-flip phase transition).

It is clear that anab-initio calculation of the ground state of AF Cr, based on actual
experimental data on the magnetic structure, would be at the moment absolutely unfeasible.
That is why most calculations are performed for a vectorQ = (2π/a)(1, 0, 0). In this
case, Cr has a CsCl unit cell. The local magnetic moments at different atoms are equal
in magnitude but opposite in direction. Such an approach has been used, in particular,
in [2–4], in which the electronic structure of Cr is calculated within the framework of
spin-density functional theory. AF ordering is shown to cause a decrease in the density of
states at the Fermi level due to the appearance of an AF gap, which results in a gain in
total energy. The results obtained confirm Lomer’s [5] supposition as to the role of the
nesting character of the electronic and hole sheets of the Fermi surface of non-magnetic Cr
in the formation of the AF state. Additional investigation of the structure of AF Cr Fermi
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surface and its pressure dependence has been reported in [4]. Our paper [6] is devoted to
the study of the influence of relativistic effects on the electronic structure of chromium.
The results of calculations demonstrate that the relativistic effects completely change the
structure of the Cr electron spectrum, which leads to its anisotropy for directions identical
in the non-relativistic approach.

A first-principles calculation of the total energy for a four-atom magnetic cell of Cr
(Q = (2π/a)(0.5, 0, 0)) has been carried out in [7]. The main result of the paper is the
statement that for such a cell the ground state is not AF.

In a number of papers the parametrization of the electronic structure of non-magnetic
Cr near the Fermi surface is used to give a qualitative description of the experimental data
for the incommensurate spin-density wave (ISDW) of Cr and its alloys. So, in [8] the
optical absorption in chromium with an ISDW was investigated in a one-dimensional two-
band model, while in [9] the ISDW was studied using a two-band nesting model within the
mean-field approximation.

Finally, in [10] the sinusoidal SDW was treated with a modeltight-bindingHamiltonian
whose parameters are assumed to be constant (except for the energy of d orbitals) and are
calculated for paramagnetic Cr.

From the above it appears that a variety of approaches can be used to study the ground
state of AF chromium with a SDW. Up to now, however, there have been no first-principles
calculations of the electronic structure of chromium with a SDW, because these require huge
computational efforts owing to the large dimension of dispersive matrices.

In the present paper we suggest a simple technique for calculating the electronic structure
in the presence of a SDW, based on the variational Ritz procedure.

2. General formalism

In accordance with [11], the Dirac equation for a system with SDW can be written as

(Ĥ0 + 1V 6̂)9 = E9 (1)

where9 is a four-component spinor and̂H0 is the standard Dirac operator given by

Ĥ0 = cα̂p̂ + mc2β̂ + V Î . (2)

Here

α̂ =
[

0 σ

σ 0

]
β̂ =

[
I 0
0 −I

]
6̂ =

[
σz 0
0 σz

]
(3)

σ = (σx, σy, σz) are the Pauli matrices andI is the unit matrix. We also assume the magnetic
moment to be oriented in theZ direction.

Thus, the effective electron potential at siteRj consists of two terms: the
site-independent average potentialV (r) and an addition1Vj(r) connected with spin
polarization.

The variational Ritz procedure reduces the problem of solving (1) to solving the
generalized eigenvalue problem∑

n′
(Hnn′ − EOnn′)bn′ = 0 n = 1, 2, ..., N (4)

whereN is the number of basis functionsϕn(r),

Hnn′ =
∫

ϕn
+(r) Ĥϕn′(r) dr (5)
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Onn′ =
∫

ϕn
+(r) ϕn′(r) dr (6)

Ĥ is the system Hamiltonian andbn′ are variational parameters.
The functionsE are determined by the zeros of the secular determinant

det|Hnn′ − EOnn′ | = 0. (7)

The principal distinction between various computational techniques reduces eventually to
the choice of basis functionsϕn(r).

In this paper, for functionsϕn(r) we shall use the four-component spinorsψn(q, r)

which are solutions of the Dirac equation

Ĥ0ψn(q, r) = E0
nψn(q, r) (8)

Herer varies within the boundaries of a magnetic (extended) cell, andq is a wavevector
from the corresponding Brillouin zone.

As the potentialV (r) in (2) is identical for all atoms in the extended cell, the problem of
finding the energy eigenfunctions and eigenvalues in (8) may be reduced to their calculation
for a one-atom cell. Let̄ψ(k, r̄) andε(k) denote the eigenfunctions and the corresponding
energies calculated for such a one-atom cell, respectively. Since, in the absence of spin
order, chromium has a BCC structure, the vectorsr′ and k belong to the Wigner–Seitz
cell and the Brillouin zone of a BCC lattice, respectively. The electron spectrum of the
extended magnetic cell is then defined as a union of spectra,ε(kp):

E0(q) = {ε(k0), ε(k1), . . . , ε(kN − 1)}. (9)

Here

kp = q + χp

andχp coincides in direction with the vectorQ, and its magnitude is defined as

|χp| = 4π

a

p

N
for p = 0, 1, 2, . . . , N − 1

whereN is the number of atoms in the magnetic cell.
The four-component functionsψ(q, r) can be obtained from̄ψ(kp, r ′) by merely using

the Bloch conditions

ψ(q, r′ + Rj ) = exp(ikp · Rj )ψ(kp, r′). (10)

The basis functions constructed in this manner automatically satisfy the necessary
boundary conditions for a magnetic cell. They are orthonormal by virtue of being
eigenfunctions of the Hermitian operator̂H0, therefore the overlapping integrals (6) take
the form ∫

ψn
+(q, r)ψn′(q, r) dr = δnn′ . (11)

The solutions9(q, r) of the Dirac equation (1) for the SDW are represented as a linear
combination ofψn(q, r) with variational parametersbn:

9(q, r) =
∑

n

bnψn(q, r) (12)

Since it is the d electrons that are responsible for the formation of AF order in Cr,
it would be reasonable to take into account in equation (12) only the energy bands with
addition of 3d electrons. In view of double degeneracy, the number of such bands is 12N .
This magnitude will determine the minimum number of basis functions to be allowed for
in expansion (12).
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2.1. Calculation of matrix elementsHnn′

Our calculations are based on the relativistic version of the KKR method [12] and, as usual,
the potential is believed to have amuffin-tin (MT) form. Then, by virtue of the fact that,
outside the MT sphere,V (r) and1V (r) are equal to zero, andψ(q, r) are eigenfunctions
of operatorĤ0, the matrix elements (5) can be written as

Hnn′(q) = E0
n(q)δnn′ + H̃nn′(q). (13)

Here

H̃nn′(q) =
∑

j

∫
�MT

ψj+
n (q, r)

(
1Vj(r) 6̂z

)
ψj

n′(q, r) dr. (14)

In the relativistic KKR method the trial function inside thej th MT sphere is chosen as
a linear combination of solutions of the Dirac equation in the centre-symmetrical field with
variational coefficientsCjn

κµ(q):

ψ(j)
n (q, r) =

∑
κµ

ilCjn
κµ(k)

(
g

jn
κ (r)ϕκµ(r̂)

−if jn
κ (r)ϕκ̄µ(r̂)

)
. (15)

Here κ is a quantum number such thatκ = l if κ > 0, andκ = −(l + 1) if κ < 0;
κ̄ = −κ and ϕκµ are spherical spinors.gjn

κ (r) and f
jn
κ (r) are the solutions of the set of

radial equations

(gjn
κ (r))′ =

(
1 + E − V (j)(r)

c2

)
cf jn

κ (r) − κ + 1

r
gjn

κ (r)

(cf jn
κ (r))′ = κ − 1

r
cf jn

κ (r) − [E − V (j)(r)]gjn
κ (r)

(16)

andc is the velocity of light.
As the potentialV (r) is identical for all the atoms in the magnetic cell, the functions

gκ(r) and fκ(r) do not depend on the atom number and may be calculated only once for
eachk. In what follows the indexj on the functionsgn

κ (r) andf n
κ (r) will be dropped.

Substituting (15) into (14) yields the following explicit expression forH̃nn′(q):

H̃nn′(q) =
∑

j

∑
κµ

Cjn∗
κµ (q)Cjn′

κµ (q)

[
2µ

2κ − 1

rSj∫
0

r2f n
κ (r) 1Vj (r) f n′

κ (r) dr

− 2µ

2κ + 1

rSj∫
0

r2gn
κ (r) 1Vj (r) gn′

κ (r) dr

]

−C
jn∗
κ̄+1,µ(q)Cjn′

κµ (q)

[
β−

rSj∫
0

r2f n
κ̄+1(r)1Vj (r) f n′

κ (r) dr

]

+C
jn∗
κ̄−1,µ(q)Cjn′

κµ (q)

[
β+

rSj∫
0

r2gn
κ̄−1(r)1Vj (r) gn′

κ (r) dr

]
(17)

Here

β± = 2

√
κ + µ ± 1

2

2κ ± 1

√
κ − µ ± 1

2

2κ ± 1
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andrSj
is the radius of thej th MT sphere.

Thus the matrix elements̃Hnn′(q) include four terms, the first two terms involving the
solutions of the set of radial equations (16) with the same value ofκ. The last term relates
the states with different values ofκ and−κ − 1, and the same value of the orbital number
l. As to the third term, it mixes the statesκ and −κ + 1 corresponding tol and l ± 2,
respectively. Note that also in the standard spin-polarized KKR method the set of radial
equations involves a term relatingl and l ± 2 which is neglected [11, 13]. Unlike those
papers, we need not do this.

Since in the relativistic KKR method the wavefunctions are defined only inside the MT
sphere, difficulties emerge in calculating integrals (11). In this work, when normalizing
the wavefunctions, the following relations have been used to define the normalized KKR
coefficientsCjn

κµ(q) [14]:∑
j,κµ

|Cjn
κµ|2 = − 1

∂λi/∂E

∑
κµ

(∫ rS

0 (g2
κ + f 2

κ )r2 dr
) |ti,κµ|2{∫ rS

0 V (r)

[
gκjl + fκ

√
E0

n

c

(
j

′
l + κ+1

r
√

E0
n

jl

)]
r2 dr

}2 . (18)

Hereλi and ti,κµ are theith eigenvalue and the corresponding eigenvectors of the standard
KKR dispersive matrix,rS is the radius of the MT sphere, andjl andj ′

l are Bessel functions
and their derivatives djl(x)/dx, respectively. In deriving relation (18) in [14], the radial
functionsgκ , fκ and the functionsψn were assumed to be normalized to unity in the MT
sphere and the unit cell, respectively.

Up to this point we have not used the explicit form of the spin-polarizing exchange
potential1Vj(r). From here on,1Vj(r) will be assumed to vary in the magnetic cell as

1Vj(r) = 1υ(r) cos(Q · Rj ) (19)

1υ(r) being site independent.

3. Computational results

In order to verify whether our technique works well, we have calculated the electronic
structure of AF Cr forQ = (2/π)(0, 1, 0). As mentioned above, in this case the unit cell
contains two atoms with coordinatesR0 = (a/2)(0, 0, 0) and R1 = (a/2)(1, 1, 1), and
the magnetic moments equal in magnitude but opposite in direction. As a consequence, at
different lattice sites, the spin-polarizing part of potential (19) differs only in sign.

The accuracy of the technique was tested by comparing the energy eigenvalues with
those obtained within the spin-polarized relativistic KKR (SPRKKR) method. We used this
method in [6] to calculate the electronic structure of AF Cr. In the present calculation the
potentialsV (r) and1V (r) are identical with those of [6].

The wavefunctions of equation (2) corresponding to the first 12 energy levels of the
valence band were used as basis functions (12). As each energy level of non-magnetic Cr
is doubly degenerate, the total number of terms in expansion (12) is 24.

The results of calculations for the points0 ((2π/a)(0, 0, 0)) and X ((2π/a)(0, 0.5, 0))
of the Brillouin zone are listed in table 1. It can be seen that the energy eigenvalues
differ, on the average, by 5× 10−4 Ryd between the two calculations. Such an accuracy
is quite sufficient for most applications. The qualitative picture of the electron spectrum
is in complete agreement with our previous SPRKKR calculation. In particular, taking
into consideration the relativistic effects results in additional lowering of symmetry and
consequently in anisotropy of the electron spectrum for the [010] and [001] directions of
the Brillouin zone. Although the difference between the energies of these directions is small
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(∼0.05 mRyd), our calculation of the density of states and optical conductivity for Cr [6]
has shown the contribution of the relativistic effects to the integral characteristics to be
noticeable, in spite of their smallness.

Table 1. Electron spectrum of AF Cr at points0 and X for Q = (2π/a)(0, 1, 0) (as compared
with the SPRKKR method).

En (Ryd)

Point 0 Point X

Bandn Present calculation SPRKKR [6] Present calculation SPRKKR [6]

1 0.0924 0.0924 0.3912 0.3911
2 0.4062 0.4061 0.3968 0.3968
3 0.4063 0.4061 0.5587 0.5582
4 0.6429 0.6427 0.6173 0.6172
5 0.6431 0.6429 0.6565 0.6558
6 0.6469 0.6467 0.6567 0.6558
7 0.7860 0.7853 0.7193 0.7192
8 0.7860 0.7853 0.7196 0.7194
9 0.8871 0.8869 0.8025 0.8025
10 0.8872 0.8870 0.8395 0.8395
11 0.8921 0.8919 0.9005 0.9006

To emphasize the fundamental importance of such anisotropy we have performed a
model calculation of the electron structure of AF Cr for two types of unit cell extended
along the axesY andZ, which corresponded to the longitudinal (Q = 2π/a(0, 0, 1 − δ))
spin-density wave (SDW‖) and transverse (Q = (2π/a)(0, 1 − δ, 0)) spin-density wave
SDW⊥), respectively. Recall that the magnetic moment of the system wasZ directed.
Additionally, we have varied the number of atoms per unit cell:N = 2, 4, 8, 20 and 40,
which corresponded toδ = 0, 0.5, 0.25, 0.1 and 0.05, respectively. In all instances the same
values ofV (r) and 1υ(r) were used. The spin-polarizing exchange part of the potential
1V (r) for different atoms of the unit cell was defined according to (19). The number of
terms in expansion (12) is 12N .

Since the calculation was not self-consistent and a model potential was used, we have
calculated only the band contribution to the total energy

EB =
EF∫

EN(E) dE. (20)

When calculating the densityN(E) of states, integration over the Brillouin zone was
performed by the tetrahedron method.

Figure 1 plots the difference1EB = EB⊥ − EB‖ in band energy between SDW⊥ and
SDW‖ as a function of the number of atoms in the unit cell. As can be seen, in all variants
the magnitude ofEB is smaller for the SDW‖.

Although in the relativistic calculation the difference between the band energies of
different SDW polarizations is insignificant, being actually at the limit of accuracy of
our calculation, we can state with a fair degree of assurance that taking into account
the relativistic effects in AF Cr results in the fact that the SDW‖ and SDW⊥ become
energetically non-equivalent.

In the non-relativistic limit (atc = 1020) the band contribution to the total energy does
not depend on the SDW polarization. This is apparent from table 2 in which the numerical
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Figure 1. The difference1EB = EB⊥ − EB‖ in band energy (per atom) between the SDW⊥
and the SDW‖ as a function of the number of atoms in the unit cell.

values ofEB for a four-atom unit cell are listed. The table also gives the values of the
Fermi energyEF and the densityN(EF ) of states at the Fermi level.

Table 2. Values of Fermi energyEF , densityNEF
of states and band contributionEB to the

total energy for the SDW‖ and the SDW⊥ at δ = 0.5 (four-atom cell). The magnetic moment
is Oz-directed.

Relativistic calculation Non-relativistic calculation

SDW⊥ SDW‖ SDW⊥ SDW‖

EF (Ryd) 0.71032 0.71030 0.71656 0.71656
N(EF ) (per cell) 9.41893 9.36621 10.5092 10.5092
EB (Ryd) 12.7067 12.7064 12.8857 12.8857

In our opinion the spin-flip (SF) phase transition occurring in AF Cr may be connected
with the electron spectrum anisotropy. This transition, observed in AF Cr at 118 K, manifests
itself in the fact that the longitudinal polarization of the SDW changes to the transverse
polarization. From the standpoint of electronic structure, the nature of this SF transition in
chromium is still unclear. Moreover, this transition is unlikely to be explained within the
framework of non-relativistic treatment, the nonrelativistic electron spectra being identical
for the SDW‖ and SDW⊥.

Obviously, to discuss the possibility of such a phase transition one should at least carry
out a fully self-consistent calculation for different lattice constants.

4. Conclusion

Although in this paper we have used the relativistic KKR wavefunctions as basis functions,
the present approach may be easily realized within any existing method for calculating
the electron states. This will allow the electronic properties of materials with a complex
magnetic structure to be readily calculated without loss of accuracy. The present technique,
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being most efficient for SDW-type systems, can also be used for helical magnetic structures.
In the latter case, however, the spin-polarizing part of potential (19) should be appropriately
redefined. The calculation of various matrix elements of the type

Aij =
∫

9+Â9 dr (21)

is also simplified since these elements are expressed in terms of the sum of matrix elements
calculated for trial functions, which generally is much simpler.
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